133 research outputs found

    Effects of a soft robotic exosuit on the quality and speed of overground walking depends on walking ability after stroke

    Get PDF
    \ua9 2023, BioMed Central Ltd., part of Springer Nature.Background: Soft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. Methods: We refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. Results: Exosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5\ub0 increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R 2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. Conclusions: The immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals

    The contribution of microlensing surveys to the distance scale

    Full text link
    In the early nineties several teams started large scale systematic surveys of the Magellanic Clouds and the Galactic Bulge to search for microlensing effects. As a by product, these groups have created enormous time-series databases of photometric measurements of stars with a temporal sampling duration and accuracy which are unprecedented. They provide the opportunity to test the accuracy of primary distance indicators, such as Cepheids, RRLyrae stars, the detached eclipsing binaries, or the luminosity of the red clump. We will review the contribution of the microlensing surveys to the understanding of the physics of the primary distance indicators, recent differential studies and direct distance determinations to the Magellanic Clouds and the Galactic Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Rural High North: A High Rate of Fatal Injury and Prehospital Death

    Get PDF
    Finnmark County is the northernmost county in Norway. For several decades, the rate of mortality after injury in this sparsely inhabited region has remained above the national average. Following documentation of this discrepancy for the period 1991–1995, improvements to the trauma system were implemented. The present study aims to assess whether trauma-related mortality rates have subsequently improved. All injury-associated fatalities in Finnmark from 1995–2004 were identified retrospectively from the National Registry of Death and reviewed. Low-energy trauma in elderly individuals and poisonings were excluded. A total of 453 cases of trauma-related death occurred during the study period, and 327 of those met the inclusion criteria. Information was retrievable for 266 cases. The majority of deaths (86%) occurred in the prehospital phase. The main causes of death were suicide (33%) and road traffic accidents (21%). Drowning and snowmobile injuries accounted for an unexpectedly high proportion (12 and 8%, respectively). The time of death did not show trimodal distribution. Compared to the previous study period, there was a significant overall decline in injury-related mortality, yet there was no change in place of death, mechanism of injury, or time from injury until death. Changes in injury-related mortality cannot be linked to improvements in the trauma system. There was no change in the epidemiological patterns of injury. The high rate of on-scene mortality indicates that any major improvement in the number of injury-related deaths lies in targeted prevention

    Effectiveness of calf muscle stretching for the short-term treatment of plantar heel pain: a randomised trial

    Get PDF
    BACKGROUND: Plantar heel pain is one of the most common musculoskeletal disorders of the foot and ankle. Treatment of the condition is usually conservative, however the effectiveness of many treatments frequently used in clinical practice, including stretching, has not been established. We performed a participant-blinded randomised trial to assess the effectiveness of calf muscle stretching, a commonly used short-term treatment for plantar heel pain. METHODS: Ninety-two participants with plantar heel pain were recruited from the general public between April and June 2005. Participants were randomly allocated to an intervention group that were prescribed calf muscle stretches and sham ultrasound (n = 46) or a control group who received sham ultrasound alone (n = 46). The intervention period was two weeks. No participants were lost to follow-up. Primary outcome measures were 'first-step' pain (measured on a 100 mm Visual Analogue Scale) and the Foot Health Status Questionnaire domains of foot pain, foot function and general foot health. RESULTS: Both treatment groups improved over the two week period of follow-up but there were no statistically significant differences in improvement between groups for any of the measured outcomes. For example, the mean improvement for 'first-step' pain (0–100 mm) was -19.8 mm in the stretching group and -13.2 mm in the control group (adjusted mean difference between groups -7.9 mm; 95% CI -18.3 to 2.6). For foot function (0–100 scale), the stretching group improved 16.2 points and the control group improved 8.3 points (adjusted mean difference between groups 7.3; 95% CI -0.1 to 14.8). Ten participants in the stretching group experienced an adverse event, however most events were mild to moderate and short-lived. CONCLUSION: When used for the short-term treatment of plantar heel pain, a two-week stretching program provides no statistically significant benefit in 'first-step' pain, foot pain, foot function or general foot health compared to not stretching

    Ethnobotanical knowledge is vastly under-documented in northwestern South America

    Get PDF
    A main objective of ethnobotany is to document traditional knowledge about plants before it disappears. However, little is known about the coverage of past ethnobotanical studies and thus about how well the existing literature covers the overall traditional knowledge of different human groups. To bridge this gap, we investigated ethnobotanical data-collecting efforts across four countries (Colombia, Ecuador, Peru, Bolivia), three ecoregions (Amazon, Andes, Chocó), and several human groups (including Amerindians, mestizos, and Afro-Americans). We used palms (Arecaceae) as our model group because of their usefulness and pervasiveness in the ethnobotanical literature. We carried out a large number of field interviews (n = 2201) to determine the coverage and quality of palm ethnobotanical data in the existing ethnobotanical literature (n = 255) published over the past 60 years. In our fieldwork in 68 communities, we collected 87,886 use reports and documented 2262 different palm uses and 140 useful palm species. We demonstrate that traditional knowledge on palm uses is vastly under-documented across ecoregions, countries, and human groups. We suggest that the use of standardized data-collecting protocols in wide-ranging ethnobotanical fieldwork is a promising approach for filling critical information gaps. Our work contributes to the Aichi Biodiversity Targets and emphasizes the need for signatory nations to the Convention on Biological Diversity to respond to these information gaps. Given our findings, we hope to stimulate the formulation of clear plans to systematically document ethnobotanical knowledge in northwestern South America and elsewhere before it vanishesThis study was funded by the European Union, 7th Framework Programme (contract no. 212631), the Russel E. Train Education for Nature Program of the WWF (to NPZ), the Anne S. Chatham fellowship of the Garden Club of America (to NPZ), and the Universidad Autónoma de Madrid travel grants programme (to RCL

    Mutations in fam20b and xylt1 Reveal That Cartilage Matrix Controls Timing of Endochondral Ossification by Inhibiting Chondrocyte Maturation

    Get PDF
    Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed “maturation,” when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development

    Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers

    Get PDF
    To compare the survival of women with uterine papillary serous carcinoma (UPSC) and clear cell carcinoma (CC) to those with grade 3 endometrioid uterine carcinoma (G3EC). Demographic, pathologic, treatment, and survival information were obtained from the Surveillance, Epidemiology, and End Results Program from 1988 to 2001. Data were analysed using Kaplan–Meier and Cox proportional hazards regression methods. Of 4180 women, 1473 had UPSC, 391 had CC, and 2316 had G3EC cancers. Uterine papillary serous carcinoma and CC patients were older (median age: 70 years and 68 vs 66 years, respectively; P<0.0001) and more likely to be black compared to G3EC (15 and 12% vs 7%; P<0.0001). A higher proportion of UPSC and CC patients had stage III–IV disease compared to G3EC patients (52 and 36% vs 29%; P<0.0001). Uterine papillary serous carcinoma, CC and G3EC patients represent 10, 3, and 15% of endometrial cancers but account for 39, 8, and 27% of cancer deaths, respectively. The 5-year disease-specific survivals for women with UPSC, CC and G3EC were 55, 68, and 77%, respectively (P<0.0001). The survival differences between UPSC, CC and G3EC persist after controlling for stage I–II (74, 82, and 86%; P<0.0001) and stage III–IV disease (33, 40, and 54; P<0.0001). On multivariate analysis, more favourable histology (G3EC), younger age, and earlier stage were independent predictors of improved survival. Women with UPSC and CC of the uterus have a significantly poorer prognosis compared to those with G3EC. These findings should be considered in the counselling, treating and designing of future trials for these high-risk patients

    Brainstem and Spinal Cord Circuitry Regulating REM Sleep and Muscle Atonia

    Get PDF
    Previous work has suggested, but not demonstrated directly, a critical role for both glutamatergic and GABAergic neurons of the pontine tegmentum in the regulation of rapid eye movement (REM) sleep.To determine the in vivo roles of these fast-acting neurotransmitters in putative REM pontine circuits, we injected an adeno-associated viral vector expressing Cre recombinase (AAV-Cre) into mice harboring lox-P modified alleles of either the vesicular glutamate transporter 2 (VGLUT2) or vesicular GABA-glycine transporter (VGAT) genes. Our results show that glutamatergic neurons of the sublaterodorsal nucleus (SLD) and glycinergic/GABAergic interneurons of the spinal ventral horn contribute to REM atonia, whereas a separate population of glutamatergic neurons in the caudal laterodorsal tegmental nucleus (cLDT) and SLD are important for REM sleep generation. Our results further suggest that presynaptic GABA release in the cLDT-SLD, ventrolateral periaqueductal gray matter (vlPAG) and lateral pontine tegmentum (LPT) are not critically involved in REM sleep control.These findings reveal the critical and divergent in vivo role of pontine glutamate and spinal cord GABA/glycine in the regulation of REM sleep and atonia and suggest a possible etiological basis for REM sleep behavior disorder (RBD)

    Superoxide Dismutase 1 and tgSOD1G93A Mouse Spinal Cord Seed Fibrils, Suggesting a Propagative Cell Death Mechanism in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that specifically affects motor neurons and leads to a progressive and ultimately fatal loss of function, resulting in death typically within 3 to 5 years of diagnosis. The disease starts with a focal centre of weakness, such as one limb, and appears to spread to other parts of the body. Mutations in superoxide dismutase 1 (SOD1) are known to cause disease and it is generally accepted they lead to pathology not by loss of enzymatic activity but by gain of some unknown toxic function(s). Although different mutations lead to varying tendencies of SOD1 to aggregate, we suggest abnormal proteins share a common misfolding pathway that leads to the formation of amyloid fibrils.Methodology/Principal Findings: Here we demonstrate that misfolding of superoxide dismutase 1 leads to the formation of amyloid fibrils associated with seeding activity, which can accelerate the formation of new fibrils in an autocatalytic cascade. The time limiting event is nucleation to form a stable protein "seed" before a rapid linear polymerisation results in amyloid fibrils analogous to other protein misfolding disorders. This phenomenon was not confined to fibrils of recombinant protein as here we show, for the first time, that spinal cord homogenates obtained from a transgenic mouse model that overexpresses mutant human superoxide dismutase 1 (the TgSOD1(G93A) mouse) also contain amyloid seeds that accelerate the formation of new fibrils in both wildtype and mutant SOD1 protein in vitro.Conclusions/Significance: These findings provide new insights into ALS disease mechanism and in particular a mechanism that could account for the spread of pathology throughout the nervous system. This model of disease spread, which has analogies to other protein misfolding disorders such as prion disease, also suggests it may be possible to design assays for therapeutics that can inhibit fibril propagation and hence, possibly, disease progression

    Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    Get PDF
    Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions: The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference
    corecore